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Abstract – Differential evolution (DE) has attracted much attention recently as an effective approach for solving 
numerical optimization problems which arise in many science and engineering fields. This paper presents two modified 
mutation schemes of differential evolution algorithm for engineering design optimization problem with constraints. 
These modified mutation scheme are based on interpolation rules, first scheme is based on Inverse Quadratic 
Interpolation called IQI-DE and second scheme is based on sequential parabolic interpolation called SPI-DE. The 
proposed variants are tested on 4 engineering design optimization problems, taken from literature. The results show that 
the proposed modifications improve the performance of basic DE. 
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1. Introduction  
 

The general engineering optimization problem can 
be defines as follows: 
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where RxxxX D ∈= ),,,( 21  is D-dimensional 

vector of decision space, )(Xf  is objective function, 
0)( ≤Xgi are p-inequality constraints, 0)( =Xhi are 

m-p equality constraints. The function f, g i , and h i  are 
linear or non-linear real valued functions. The values 

U
i

L
i xx , are lower and upper bounded of 

ix respectively. 
The  numerical  optimization  problems  may  

occur  in  almost  every  field  of  science  and  
engineering, and in many other real life optimization 
problems. A literature of several evolutionary 
algorithms for solving real life problems can be found 
in [2]-[7]. 

Differential Evolution (DE) is an evolutionary 
algorithm, proposed by Storn and Price in 1997 [1] 
for solving continuous global optimization problems. 
DE is a simple and efficient, stochastic; population 
set based methods for global optimization over 
continuous space. It is capable of handling non-

differentiable, nonlinear and multi-modal objective 
functions and has been successfully demonstrated on 
a wide range of real life problems such as aircraft 
landing system [8], engineering design, chemical 
engineering, mechanical engineering pattern 
recognition, and so on [9]. 

Several variants of DE are available in literature, 
which aim at improving its performance. Some of the 
modified variants are; Learning enhance DE (LeDE) 
[9], Cauchy mutation DE (CDE) [10], Modified DE 
(MDE) [11], DE with self adaptive control parameter 
(jDE) [12], DE with Trigonometric Mutation (TDE) 
[13], DE with global and local neighborhood (DEGL) 
[14], DE with random localization (DERL) [15], 
Fuzzy adaptive DE (FADE) [16], DE with simplex 
crossover local search (DEahcSPX) [17], Mixed 
mutation strategy based DE [18], Self adaptive DE 
(SaDE) [19], Opposition based DE(ODE) [20], 
adaptive DE with optional external archive (JADE) 
[21], and so on. 

Most of the above variants have been applied to 
global optimization problems, the reason being that 
most of the real life problems can be formulated as 
optimization problems [22]. These types of problems 
normally have mixed (e.g., continuous and discrete) 
design variables, nonlinear objective functions and 
nonlinear constraints, some of which may be active at 
the global optimum. The presence of constraints 
usually increases the complexity of the problems 
However, it is not possible to avoid or ignore the 
constraints as they are very important in engineering 
design problems. They are normally imposed on the 
statement of the problems and sometimes are very 
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hard to satisfy, which makes the search difficult and 
inefficient [23]. A detail literature review of 
implementation of different evolutionary algorithms 
on engineering problems can be found in [23]- [30]. 

In basic DE, the base vector is either randomly 
selected (DE/rand/bin) or is selected ‘greedily’. In 
this paper we have proposed two new interpolation 
based ideas to generate base vector for mutation 
operation. The first idea is based on Inverse 
Quadratic Interpolation (IQI) and the second is based 
on Sequential Parabolic Interpolation (SPI). The 
corresponding DE variants are named as IQI-DE and 
SPI-DE. Both variants aim at efficiently generating 
the base vector in the mutation phase of DE. The only 
difference to DE and both proposed algorithms at 
base vector in mutation operation. The significance of 
selecting efficient base vector is discussed later in the 
paper. 

Here we would like to mention that we have 
already successfully applied IQI-DE and SPI-DE on 
unconstrained benchmark problems in [31]. 
Encouraged by its performance, in the present study, 
we have extended IQI-DE and SPI-DE for solving 
constrained engineering design problems to check 
their efficiency and robustness on real world 
application problems. 

The rest of the paper is structured as follows; In 
section 2 we give the introduction of simple DE. The 
description of proposed modified DE variants named IQI-
DE and SPI-DE are given in section 3. In section 4 
engineering problems are given. Experimental settings 
and numerical results are discussed in section 5 and 
section 6 respectively and finally paper is concluded in 
section 7. 
 
2. Simple Differential Evolution (SDE) 
 

DE is a stochastic, population-based direct search 
method for optimizing real-valued functions of 
continuous variables. 

The working of DE is as follows:  
First, all individuals are initialized with uniformly 

distributed random numbers and evaluated using the 
fitness function provided. Then the following will be 
executed until maximum number of generation has 
been reached or an optimum solution is found. For 
simple DE (DE/rand/1/bin) the mutation, crossover 
and selection operator defined as follows: 

 
Mutation: For a D-dimensional search space, for 

each target vector Xi,G  at the generation G, its 
associated mutant vector is generated via certain 
mutation strategy. The most often used mutation 
strategy implemented in the DE is given by 
Equation.(1) 
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where },....,2,1{,, 321 NPrrr ∈  are randomly chosen 
integers, different from each other and also different 
from the running index i. Here, Xr1,G  is base vector 

and F (>0) is a scaling factor which controls the 
amplification of the difference vector )( ,, 32 GrGr XX − .  

Crossover: Once the mutation phase is over, 
crossover is performed between the target vector and 
the mutated vector to generate a trial point for the 
next generation.  

The mutated individual, Vi,G+1  = (v1,i,G+1 , . . . , 
vD,i,G+1), and the current population member ( target 
vector), Xi,G = (x1,i,G, . . . , xD,i,G), are then subject to 
the crossover operation, that finally generates the 
population of candidates, or “trail” vectors,Ui,G+1 = 
(u1,i,G+1, . . . , u D,i,G+1), as follows 
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where j, k ∈ {1,…, D} k is a random parameter index, 
chosen once for each i, Cr  is the crossover probability 
parameter whose value is generally taken as Cr∈ [0, 
1]. 

Selection: The final step in the DE algorithm is 
the selection process. Each individual of the 
temporary (trial) population is compared with its 
target vector in the current population. The one with 
the lower objective function value survives the 
tournament selection and go to the next generation. 
As a result, all the individuals of the next generation 
are as good as or better than their counterparts in the 
current generation. 
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3. Proposed Algorithms 
 

Mutation is the most important operator of DE. it is 
based on the distance and magnitude of vectors and it 
helps in directing the population vectors towards the 
optimum solution. In basic DE, we see that the base 
vector is usually selected randomly vector of the 
population. This base vector plays an important role in 
generating the mutant vector. A random base vector 
provides diversity to the population but may slow down 
the convergence rate. On the other hand when base vector 
is selected as the best solution vector of the population, 
the nature of the search process becomes greedy this 
makes it faster but may also lead to a premature 
convergence. In the present study we suggest two novel 
methods of generating the base vector; Inverse quadratic 
interpolation and sequential parabolic interpolation. 
These are defined below; 

 
3.1. Inverse Quadratic Interpolation (IQI) based 
Base Vector 
 

Inverse quadratic interpolation uses three prior 
points to fit an inverse quadratic function (x as a 
quadratic function of y) whose value at y=0 is taken 
as the next estimate of the root x. If the three points 
are (a, f(a)), (b, f(b)), (c, f(c)) then the interpolation 
formula is given as; 
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Setting y=0 gives a result for the next root 

estimate.  
The working of IQI-DE is as follows; 

i. Select 3 mutually different random vectors Xr1, 
Xr2 , and Xr3  from the population and then find 
the best among these (say Xtb).  

ii. Now take a=Xr1 , b=Xr2  and c=Xr3 . and find a 
new vector (say XQ) using by Equation (4).  

iii. If any of (f(a)~f(b)), (f(b)~f(c)) and (f(c)~f(a)) are 
zero then we take these values as (f(a)+f(b)), 
(f(b)+f(c)) and (f(c)+f(a)). 

iv. Now, this new vector XQ will be the best vector from 
all Xr1, Xr2, and Xr3 because it is next root estimation 
of function using of Xr1, Xr2, and Xr3 as the initial 
solutions. 

 
3.2. Sequential Parabolic Interpolation (SPI) 
based Base Vector 
 

Like inverse quadratic interpolation SPI uses the 
three points (a, f(a)), (b, f(b)), (c, f(c)) to find the 
next estimation solution. The formulation of SPI is 
given as below; 
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Now take a=Xtb (let it is Xr1), b=Xr2 and c=Xr2 . 

and find a new vector (say XQ) using by Equation (5). 
All other steps of SPI-DE are same as defined in IQI-
DE. 

Graphical description of SPI and IQI is given in 
Figure 1. 

 

 
Figure 1. Differentiate between perturbed vector generated by simple DE and generated by interpolation based DE 

 
3.3. Proposed Variants: IQI-DE and SPI-DE 

 
The computational steps of the proposed variants are 

same as that of basic DE except in the selection of base 

vector. Further, in order to provide more diversity to the 
algorithm and to maintain a balance between exploration 
and exploitation we fixed a probability (pr) between Xtb 
and XQ to be selected as a base vector. 

 
Pseudo Code of Proposed Variants 

1 BEGIN 
2 Generate uniformly distributed random population 

PG= {Xi,G, i=1,2,...NP}. 
 Xi,G = Xlower +(Xupper –Xlower)*rand(0,1), where i =1, 

2,..,NP 
3 Evaluate f(Xi,G) 
4 while (Termination criteria is not met ) 
5 { 
6     for i=1:NP 
7          { 
8             Select three vectors Xr1,G, Xr2,G and Xr3,G  

            which are different from each other and  
            also different from Xi,G 

9             Find best vector Xtb,G among these Xr1,G,  
            Xr2,G and Xr3,G 

10             Put a= Xr1,G, b= Xr2,G and c= Xr3,G in  
            Equation(4) and Equation (5) and  
            find new vector, XQ,G  

11                if (rand (0,1)< pr ) 
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                   Xr1,G= XQ,G /* for IQI using Equation  
                                         (4) and for SPI using  
                                         Equation(5)*/ 

12                Else 
13                    Xr1,G= Xtb,G 
14                End if 
15             Perform mutation operation as defined by  

            Equation (1) 
16             Perform crossover operation as defined by  

            Equation (2) 
17             Evaluate f(Ui,G+1) 
18             Select fittest vector from Xi,G and Ui,G+1 to  

             the population of next Generation by using  
             Equation-3 

19           }/* End for loop*/ 
20 Generate new population PG+1={Xi,G+1 ,i=1,2,...NP} 

21 } /* End while loop*/ 
22 END 

 
3.4. Constraint Handling 
 
For the constraint problems various methods have been 
suggested in literature. A survey of different methods for 
constraint handling can be found in [25], [26], [27] and 
[29]. In this paper, Pareto-Ranking method is used for 
handling the constraints [32]. 
 
4. Engineering Design Problems 
 
To validate proposed IQI-DE and SPI-DE algorithms, 
four engineering design problem have been taken from 
[23]; 

 
4.1. E01: Welded Beam Engineering Design 
Problem 

 
The problem is to minimize the fabrication cost of 

a welded beam design subject to some constraints 
such as shear stress τ , bending stress in the beam σ , 
buckling load on the bar Pc , end deflection on the 
beam δ  and side constraints. Figure 2 shows the 
welded beam structure which consists of a beam A 
and the weld required to hold it to member B 

The optimization model is given as below; 

 

 
Figure 2. Welded Beam Design 
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4.2. E02: Pressure Vessel Design Optimization 
Problem 
 

A compressed air storage tank with a working 
pressure of 3,000 psi and a minimum volume of 750 
ft 3. A cylindrical vessel is capped at both ends by 
hemispherical heads (Figure. 3). Using rolled steel 
plate, the shell is made in two halves that are joined 
by teo longitudinal welds to form a cylinder. 

The objective of the problem is to minimize the 
total cost of material forming and welding of a 
cylindrical vessel. The design variables are: thickness 
x1 , thickness of the head x2 , the inner radius x3 , and 
the length of the cylindrical section of the vessel x4 . 
The variables x1  and x2  are discrete values which are 
integer multiples of 0.0625 inch.  

The formal statement is: 
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Figure 3. Pressure Vessel Design 

 
4.3. E03: Speed Reducer Design Optimization 
Problem 
 
The design of the speed reducer is shown in Figure. 4, 
with the face width x1, module of teeth x2, number of 
teeth on pinion x3, length of the first shaft between 
bearings x4, length of the second shaft between bearings 

x5, diameter of the first shaft x6, and diameter of the first 
shaft x7 (all variables continuous except x3 that is 
integer). The weight of the speed reducer is to be 
minimized subject to constraints on bending stress of the 
gear teeth, surface stress, transverse deflections of the 
shafts and stresses in the shaft. 
The problem is: 
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Figure 4. Speed Reducer Design 
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4.4. E04: Tension/Compression Spring Design 
Optimization Problem 
 
This problem minimizes the weight of a 
tension/compression spring, subject to constraints of 
minimum deflection, shear stress, surge frequency, and 
limits on outside diameter and on design variables 
(Figure-5). There are three design variables: the wire 
diameter x1, the mean coil diameter x2, and the number of 
active coils x3. The mathematical formulation of this 
problem is: 
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Figure 5. Tension/Compression Spring Design 

 
6. Experimental Settings: 
 

The following settings are taken in the present 
study: 
 Population size (NP) is taken as 100 [9] [20] [21]. 
 Control parameters, crossover rate and scaling 

factor F are both fixed at 0.5 [18]. 
 Probability rate (Pr) is taken as 0.1 [31]. 
 Over all acceleration rate AR, which is taken for 

the purpose of comparison is defined as[20]: 

%
A

BA

NFE
NFENFEAR −

=  

 where A and B are different algorithms. 
 In every case, a run was terminated when 

04
minmax 10−≤− ff  was reached where fmax  and fmin 

are respectively maximum and minimum fitness 
value [20] or when the maximum number of 
function evaluation (NFE=106) was obtained [10].  

 Total Runs=50 [20], [21]. 
 All algorithms are implemented in Dev-C++ and the 

experiments are conducted on a computer with 2.00 
GHz Intel (R) core (TM) 2 duo CPU and 2- GB of 
RAM. 

 
6. Simulated Results and Analysis: 
 
6.1. Comparison with simple DE (SDE) 
 

Solution of engineering problems is given in 
Table-1-Table-4. Each solution is taken as the 
average of 50 runs by each algorithm. We comparison 
the algorithms in the term of number of function 
evaluation (NFE) and in term of CPU time. 

In Table-1 solution of E01 is given. From the 
Table-1 we can see that the comparison for E01. Here 
it is clear that SDE take 35480 NFE to reach the 
solution while total NFE taken by SPI-DE and IQI-
DE are 32170 and 30370 respectively. Hence the 
acceleration rate of SPI-DE with respect to SDE is 
9.32% while acceleration rate of IQI-DE with respect 
to SDE is 14.40%. 

Similarly we can see results for the other 
engineering problems from Table-2, Table-3 and 
Table-4 and analysis the efficiency of SPI-DE and 
IQI-DE. For E02 SPI-DE and IQI-DE are 36.75% and 
37.19% respectively faster than SDE. In case of E03, 
SPI-DE and IQI-DE are 55.53% and 55.91% 
respectively faster than SDE. So we can see that for 
E01, E02 and E03, IQI-DE gives faster performance 
than SPI-DE and SDE but in case of E04, the 
acceleration rate of IQI-DE is 54.42% with respect to 
SDE while acceleration rate of SPI-DE is 57.25% 
with respect to SDE. Hence in case of SPI-DE gives 
better performance than IQI-DE. 
So we can see that both SPI-DE and IQI-DE gives 
fast convergent speed rather than SDE and shows 
their superiority over SDE. 

 
Table 1. Solution of E01 and comparisions in term of average nfe of 50 runs. 

Solution SDE SPI-DE IQI-DE 
x1 0.2058 0.2058 0.2058 
x2 3.4684 3.4683 3.4683 
x3 9.0367 9.0366 9.0366 
x4 0.2057 0.2057 0.2057 

Mean 
f(x) 

1.72512 1.724851 1.724851 

CPU 
time 

0.5 sec 0.3 sec 0.2 sec 

Mean 
NFE 

35480 32170 30370 

AR(%) -- 9.32 14.40 
 



Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 228 

 

Table 2. Solution of E02 and comparisions in term of average nfe of 50 runs. 
Solution SDE SPI-DE IQI-DE 

x1 0.8125 0.8125 0.8125 
x2 0.4375 0.4375 0.4375 
x3 42.1085 42.1085 42.1085 
x4 176.65 176.63 176.63 

Mean f(x) 6060.93 6059.7143 6059.7143 
CPU time 0.8 sec 0.5 sec 0.5 sec 

Mean 
NFE 

77840 49220 48890 

AR(%) -- 36.76 37.19 
 

Table 3. Solution of E03 and comparisions in term of average nfe of 50 runs. 
Solution SDE SPI-DE IQI-DE 

x1 3.4999 3.4999 3.4999 
x2 0.7 0.7 0.7 
x3 17.0 17.0 17.0 
x4 7.3 7.3 7.3 
x5 7.8 7.8 7.8 
x6 3.35021 3.35021 3.35021 
x7 5.28668 5.28668 5.28668 

Mean f(x) 2996.31 2996.31 2996.31 
CPU time 0.5 sec 0.1 sec 0.1 sec 

Mean 
NFE 

34480 15330 15200 

AR(%) -- 55.53 55.91 
 

Table 4. Solution of E04 and comparisions in term of average nfe of 50 runs. 
Solution SDE SPI-DE IQI-DE 

x1 0.05169 0.05169 0.05169 
x2 0.3568 0.3567 0.3567 
x3 11.2914 11.2871 11.2871 

Mean f(x) 0.012675 0.012665 0.012665 
CPU time 0.1 sec 0.05 sec 0.06 sec 

Mean NFE 7790 3330 3550 
AR(%) -- 57.25 54.42 

 
In Figure 6, the convergence graphs for engineering 
problems are given in term of NFE and fitness values. 
Here we would like to mention that these graphs are 

based on the best results in 50 runs by each 
algorithm. 
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Figure 6. Convergence graphs for (a) E-01 (b) E-02 (c) E-03, (d) E-04 

 
6.2. Comparison with Other Algorithms 
 
Comparison of proposed SPI-DE and IQI-DE with 
other algorithms, CPSO [22], SicPSO [23], CoPSO 
[24], Coello [25], Coello and Montes [26] , He et al 
[28], and MBFOA [30], are given in Table-5. These 

results are given in term of average fitness which is 
taken from different literature. From Table-5 it can be 
see that every algorithm is able to solve the given set 
of problems but our proposed SPI-DE and IQI-DE 
gives the better solution in the comparison of other 
evolutionary algorithms. 

 
Table 5. Comparisons of Proposed SPI-DE and IQI-DE with other evolutionary algorithms in terms of average 

fitness value 
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Algorithms Problems 
 E01 E02 E03 E04 
CoPS
O 

1.72485 6,059.7
143 

2,996.34
81 

0.012665 

Coello  1.74830 6288.74
45 

NA 0.012704 

Coello 
& 
Monte
s  

1.72822 6059.94
63 

NA 0.012681
0 

SicPS
O 

1.72485 6,059.7
143 

2,996.34
81 

0.012665 

CPSO 1.72802 6061.07
77 

NA 0.012674 

He et 
al 

2.381 6059.71
43 

NA 0.012671 

MBF
OA 

2.386 6060.46
0 

NA 0.012665 

SPI-
DE 

1.72485
1 

6059.71
43 

2996.31 0.012665 

IQI-
DE 

1.72485
1 

6059.71
43 

2996.31 0.012665 

 
7. Conclusions 

 
In the present study, two modified methods are 

suggested for selecting the base vector. Both methods 
are based on interpolation: inverse quadratic 
interpolation and sequential parabolic interpolation. 
The corresponding DE variants are named IQI-DE 
and SPI-DE. Basically the idea behind these variants; 
IQI and SPI is to exploit the local information of the 
search domain for generating the base vector. The 
proposed IQI-DE and SPI-DE are validated on a set 
of 4 engineering design problems. All the problems 
are non linear and constrained in nature and the 
numerical results are compared with basic DE and 
also with other methods previously used for solving 
these problems. Form the results; it was observed that 
the proposed variants are quite competent for solving 
such problems and give the superior performance in 
the comparison of SDE and some other enhance 
version of evolutionary algorithms. 
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