
Advances in Mechanical Engineering and its Applications (AMEA) 221
Vol. 2, No. 3, 2012, ISSN 2167-6380
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

Differential Evolution with Interpolation Based Mutation
Operators for Engineering Design Optimization

1Pravesh Kumar, 1Millie Pant, 2VP Singh

1Indian Institute of Technology, Roorkee, India

2 Stallion College for Engineering and Technology, Saharanpur, India

Email: praveshtomariitr@gmail.com; millidma@gmail.com; singhvp3@gmail.com

Abstract – Differential evolution (DE) has attracted much attention recently as an effective approach for solving
numerical optimization problems which arise in many science and engineering fields. This paper presents two modified
mutation schemes of differential evolution algorithm for engineering design optimization problem with constraints.
These modified mutation scheme are based on interpolation rules, first scheme is based on Inverse Quadratic
Interpolation called IQI-DE and second scheme is based on sequential parabolic interpolation called SPI-DE. The
proposed variants are tested on 4 engineering design optimization problems, taken from literature. The results show that
the proposed modifications improve the performance of basic DE.

Keywords – Differential Evolution; Mutation; Engineering Design Optimization Problem

1. Introduction

The general engineering optimization problem can
be defines as follows:

Dixxxwhere

mpiXhand
piXgtosubject

XfMinimizae

U
ii

L
i

i

i

,,2,1,

,,1,0)(
,,2,1,0)(,

),(







=≤≤

+==
=≤

where RxxxX D ∈=),,,(21  is D-dimensional

vector of decision space,)(Xf is objective function,
0)(≤Xgi are p-inequality constraints, 0)(=Xhi are

m-p equality constraints. The function f, g i , and h i are
linear or non-linear real valued functions. The values

U
i

L
i xx , are lower and upper bounded of

ix respectively.
The numerical optimization problems may

occur in almost every field of science and
engineering, and in many other real life optimization
problems. A literature of several evolutionary
algorithms for solving real life problems can be found
in [2]-[7].

Differential Evolution (DE) is an evolutionary
algorithm, proposed by Storn and Price in 1997 [1]
for solving continuous global optimization problems.
DE is a simple and efficient, stochastic; population
set based methods for global optimization over
continuous space. It is capable of handling non-

differentiable, nonlinear and multi-modal objective
functions and has been successfully demonstrated on
a wide range of real life problems such as aircraft
landing system [8], engineering design, chemical
engineering, mechanical engineering pattern
recognition, and so on [9].

Several variants of DE are available in literature,
which aim at improving its performance. Some of the
modified variants are; Learning enhance DE (LeDE)
[9], Cauchy mutation DE (CDE) [10], Modified DE
(MDE) [11], DE with self adaptive control parameter
(jDE) [12], DE with Trigonometric Mutation (TDE)
[13], DE with global and local neighborhood (DEGL)
[14], DE with random localization (DERL) [15],
Fuzzy adaptive DE (FADE) [16], DE with simplex
crossover local search (DEahcSPX) [17], Mixed
mutation strategy based DE [18], Self adaptive DE
(SaDE) [19], Opposition based DE(ODE) [20],
adaptive DE with optional external archive (JADE)
[21], and so on.

Most of the above variants have been applied to
global optimization problems, the reason being that
most of the real life problems can be formulated as
optimization problems [22]. These types of problems
normally have mixed (e.g., continuous and discrete)
design variables, nonlinear objective functions and
nonlinear constraints, some of which may be active at
the global optimum. The presence of constraints
usually increases the complexity of the problems
However, it is not possible to avoid or ignore the
constraints as they are very important in engineering
design problems. They are normally imposed on the
statement of the problems and sometimes are very

http://www.worldsciencepublisher.org/
mailto:praveshtomariitr@gmail.com
mailto:millidma@gmail.com
mailto:singhvp3@gmail.com

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 222

hard to satisfy, which makes the search difficult and
inefficient [23]. A detail literature review of
implementation of different evolutionary algorithms
on engineering problems can be found in [23]- [30].

In basic DE, the base vector is either randomly
selected (DE/rand/bin) or is selected ‘greedily’. In
this paper we have proposed two new interpolation
based ideas to generate base vector for mutation
operation. The first idea is based on Inverse
Quadratic Interpolation (IQI) and the second is based
on Sequential Parabolic Interpolation (SPI). The
corresponding DE variants are named as IQI-DE and
SPI-DE. Both variants aim at efficiently generating
the base vector in the mutation phase of DE. The only
difference to DE and both proposed algorithms at
base vector in mutation operation. The significance of
selecting efficient base vector is discussed later in the
paper.

Here we would like to mention that we have
already successfully applied IQI-DE and SPI-DE on
unconstrained benchmark problems in [31].
Encouraged by its performance, in the present study,
we have extended IQI-DE and SPI-DE for solving
constrained engineering design problems to check
their efficiency and robustness on real world
application problems.

The rest of the paper is structured as follows; In
section 2 we give the introduction of simple DE. The
description of proposed modified DE variants named IQI-
DE and SPI-DE are given in section 3. In section 4
engineering problems are given. Experimental settings
and numerical results are discussed in section 5 and
section 6 respectively and finally paper is concluded in
section 7.

2. Simple Differential Evolution (SDE)

DE is a stochastic, population-based direct search
method for optimizing real-valued functions of
continuous variables.

The working of DE is as follows:
First, all individuals are initialized with uniformly

distributed random numbers and evaluated using the
fitness function provided. Then the following will be
executed until maximum number of generation has
been reached or an optimum solution is found. For
simple DE (DE/rand/1/bin) the mutation, crossover
and selection operator defined as follows:

Mutation: For a D-dimensional search space, for

each target vector Xi,G at the generation G, its
associated mutant vector is generated via certain
mutation strategy. The most often used mutation
strategy implemented in the DE is given by
Equation.(1)

)(* ,,,1, 321 GrGrGrGi XXFXV −+=+ (1)

where },....,2,1{,, 321 NPrrr ∈ are randomly chosen
integers, different from each other and also different
from the running index i. Here, Xr1,G is base vector

and F (>0) is a scaling factor which controls the
amplification of the difference vector)(,, 32 GrGr XX − .

Crossover: Once the mutation phase is over,
crossover is performed between the target vector and
the mutated vector to generate a trial point for the
next generation.

The mutated individual, Vi,G+1 = (v1,i,G+1 , . . . ,
vD,i,G+1), and the current population member (target
vector), Xi,G = (x1,i,G, . . . , xD,i,G), are then subject to
the crossover operation, that finally generates the
population of candidates, or “trail” vectors,Ui,G+1 =
(u1,i,G+1, . . . , u D,i,G+1), as follows



 =∨≤

= +
+ otherwisex

kjCrrandifv
u

Gij

jGij
Gij

,,

1,,
1,, (2)

where j, k ∈ {1,…, D} k is a random parameter index,
chosen once for each i, Cr is the crossover probability
parameter whose value is generally taken as Cr∈ [0,
1].

Selection: The final step in the DE algorithm is
the selection process. Each individual of the
temporary (trial) population is compared with its
target vector in the current population. The one with
the lower objective function value survives the
tournament selection and go to the next generation.
As a result, all the individuals of the next generation
are as good as or better than their counterparts in the
current generation.



 ≤

= ++
+ otherwiseX

XfUfifU
X

Gi

GiGiGi
Gi

,

,1,1,
1,

)()((3)

3. Proposed Algorithms

Mutation is the most important operator of DE. it is
based on the distance and magnitude of vectors and it
helps in directing the population vectors towards the
optimum solution. In basic DE, we see that the base
vector is usually selected randomly vector of the
population. This base vector plays an important role in
generating the mutant vector. A random base vector
provides diversity to the population but may slow down
the convergence rate. On the other hand when base vector
is selected as the best solution vector of the population,
the nature of the search process becomes greedy this
makes it faster but may also lead to a premature
convergence. In the present study we suggest two novel
methods of generating the base vector; Inverse quadratic
interpolation and sequential parabolic interpolation.
These are defined below;

3.1. Inverse Quadratic Interpolation (IQI) based
Base Vector

Inverse quadratic interpolation uses three prior
points to fit an inverse quadratic function (x as a
quadratic function of y) whose value at y=0 is taken
as the next estimate of the root x. If the three points
are (a, f(a)), (b, f(b)), (c, f(c)) then the interpolation
formula is given as;

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 223

))()())(()((
))())(((

))()())(()((
))())(((

))()())(()((
))())(((

afbfcfbf
bafycfy

cfafbfaf
acfybfy

bfcfafcf
cbfyafyx

−−
−−

+

−−
−−

+
−−

−−
=

 (4)
Setting y=0 gives a result for the next root

estimate.
The working of IQI-DE is as follows;

i. Select 3 mutually different random vectors Xr1,
Xr2 , and Xr3 from the population and then find
the best among these (say Xtb).

ii. Now take a=Xr1 , b=Xr2 and c=Xr3 . and find a
new vector (say XQ) using by Equation (4).

iii. If any of (f(a)~f(b)), (f(b)~f(c)) and (f(c)~f(a)) are
zero then we take these values as (f(a)+f(b)),
(f(b)+f(c)) and (f(c)+f(a)).

iv. Now, this new vector XQ will be the best vector from
all Xr1, Xr2, and Xr3 because it is next root estimation
of function using of Xr1, Xr2, and Xr3 as the initial
solutions.

3.2. Sequential Parabolic Interpolation (SPI)
based Base Vector

Like inverse quadratic interpolation SPI uses the
three points (a, f(a)), (b, f(b)), (c, f(c)) to find the
next estimation solution. The formulation of SPI is
given as below;

))()()(())()()((
))()(()())()(()(

2
1 22

bfafcacfafba
bfafcacfafbaax

−−−−−
−−−−−

+= (5)

Now take a=Xtb (let it is Xr1), b=Xr2 and c=Xr2 .

and find a new vector (say XQ) using by Equation (5).
All other steps of SPI-DE are same as defined in IQI-
DE.

Graphical description of SPI and IQI is given in
Figure 1.

Figure 1. Differentiate between perturbed vector generated by simple DE and generated by interpolation based DE

3.3. Proposed Variants: IQI-DE and SPI-DE

The computational steps of the proposed variants are

same as that of basic DE except in the selection of base

vector. Further, in order to provide more diversity to the
algorithm and to maintain a balance between exploration
and exploitation we fixed a probability (pr) between Xtb
and XQ to be selected as a base vector.

Pseudo Code of Proposed Variants

1 BEGIN
2 Generate uniformly distributed random population

PG= {Xi,G, i=1,2,...NP}.
 Xi,G = Xlower +(Xupper –Xlower)*rand(0,1), where i =1,

2,..,NP
3 Evaluate f(Xi,G)
4 while (Termination criteria is not met)
5 {
6 for i=1:NP
7 {
8 Select three vectors Xr1,G, Xr2,G and Xr3,G

 which are different from each other and
 also different from Xi,G

9 Find best vector Xtb,G among these Xr1,G,
 Xr2,G and Xr3,G

10 Put a= Xr1,G, b= Xr2,G and c= Xr3,G in
 Equation(4) and Equation (5) and
 find new vector, XQ,G

11 if (rand (0,1)< pr)

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 224

 Xr1,G= XQ,G /* for IQI using Equation
 (4) and for SPI using
 Equation(5)*/

12 Else
13 Xr1,G= Xtb,G
14 End if
15 Perform mutation operation as defined by

 Equation (1)
16 Perform crossover operation as defined by

 Equation (2)
17 Evaluate f(Ui,G+1)
18 Select fittest vector from Xi,G and Ui,G+1 to

 the population of next Generation by using
 Equation-3

19 }/* End for loop*/
20 Generate new population PG+1={Xi,G+1 ,i=1,2,...NP}

21 } /* End while loop*/
22 END

3.4. Constraint Handling

For the constraint problems various methods have been
suggested in literature. A survey of different methods for
constraint handling can be found in [25], [26], [27] and
[29]. In this paper, Pareto-Ranking method is used for
handling the constraints [32].

4. Engineering Design Problems

To validate proposed IQI-DE and SPI-DE algorithms,
four engineering design problem have been taken from
[23];

4.1. E01: Welded Beam Engineering Design
Problem

The problem is to minimize the fabrication cost of

a welded beam design subject to some constraints
such as shear stress τ , bending stress in the beam σ ,
buckling load on the bar Pc , end deflection on the
beam δ and side constraints. Figure 2 shows the
welded beam structure which consists of a beam A
and the weld required to hold it to member B

The optimization model is given as below;

Figure 2. Welded Beam Design

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 225

724852.1*)(
),205729.0,036624.9

,470489.3,205730.0(*:
0.10,1.00.2,1.0

28
79056.01

196
36

)1030(013.4

)1030(
65856000)(,504000)(

)
2

(
12

22

,)
2

(
4

)),2/(14(6000

/",2/6000'

)"(
2

"'2)'()(

0)(6000)(
025.0)()(

0125.0)(
00.5)14(04811.010471.0)(

0)(
030000)()(

013600)()(
..

)14(04811.010471.1)(min

3241

3

6
4

2
36

3
34

62
34

231
2
2

21

231
2
2

2

21

222

7

6

15

243
2
14

413

2

1

2432
2
1

=

=
≤≤≤≤







 −

×
=

×
==






















 +
+=

+
+=+=

==

++=

≤−=
≤−=
≤−=

≤−++=

≤−=
≤−=
≤−=

++=

Xf

Xsolutionbest
xxandxx

with

x
xx

P

xx
x

xx
x

xxxxxJ

xxxRxM

JMRxx
R

xx

where
xPxg

xxg
xxg

xxxxxg

xxxg
xxg

xxg
ts

xxxxxxf

c

c

δσ

ττ

τττττ

δ

ρ
τ

4.2. E02: Pressure Vessel Design Optimization
Problem

A compressed air storage tank with a working
pressure of 3,000 psi and a minimum volume of 750
ft 3. A cylindrical vessel is capped at both ends by
hemispherical heads (Figure. 3). Using rolled steel
plate, the shell is made in two halves that are joined
by teo longitudinal welds to form a cylinder.

The objective of the problem is to minimize the
total cost of material forming and welding of a
cylindrical vessel. The design variables are: thickness
x1 , thickness of the head x2 , the inner radius x3 , and
the length of the cylindrical section of the vessel x4 .
The variables x1 and x2 are discrete values which are
integer multiples of 0.0625 inch.

The formal statement is:

000954.0)(
00193.0)(

..
84.19

1661.37781.16224.0)(min

322

311

3
2
1

4
2
1

2
32431

≤+−=
≤+−=

+

++=

xxxg
xxxg

ts
xx

xxxxxxxxf

01296000
3
4)(3

3
2
34

2
33 ≤+−−= xxxxg ππ

714335.6059*)(
),6365.176,0984.42,4375.3,8125.0(*:

200,100625.099,0625.01

0240)(

4321

44

=
=

≤≤×≤≤×

≤−−=

Xf
Xsolutionbest

xxandxx
with

xxg

Figure 3. Pressure Vessel Design

4.3. E03: Speed Reducer Design Optimization
Problem

The design of the speed reducer is shown in Figure. 4,
with the face width x1, module of teeth x2, number of
teeth on pinion x3, length of the first shaft between
bearings x4, length of the second shaft between bearings

x5, diameter of the first shaft x6, and diameter of the first
shaft x7 (all variables continuous except x3 that is
integer). The weight of the speed reducer is to be
minimized subject to constraints on bending stress of the
gear teeth, surface stress, transverse deflections of the
shafts and stresses in the shaft.
The problem is:

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 226

Figure 4. Speed Reducer Design

.

01109.160.445
110

0.1)(

01932.1)(

01932.1)(

0127)(

.015.397)(

..
)(7854.0)(4777.7)(508.1

)0934.439334.143333.3(7854.0)(min

6
2

32

4
3
6

5

4
732

3
5

4

4
632

3
4

3

2
3

2
21

2

3
2
21

1

2
75

2
64

3
7

3
6

2
7

2
61

3
2
3

2
21

≤−×+







=

≤−=

≤−=

≤−=

≤−=

+++++−

−+=

xx
x

x
xg

xxx
xxg

xxx
xxg

xxx
xg

xxx
xg

ts
xxxxxxxxx

xxxxxf

348165.2996*)(
)286683.5,350214.3,80.7,30.7,17,7.0,50.3(*

:
5.50.5,9.39.2

,3.8,3.7,2817,8.07.0,6.36.2
:

01
9.11.1

)(

01
9.15.1

)(

01
12

)(

01
5

)(

01
40

)(

01105.157
0.445

85
0.1)(

76

54321

5

7
11

4

6
10

2

1
9

1

2
8

32
7

6
2

32

4
3
7

6

=
=

≤≤≤≤
≤≤≤≤≤≤≤≤

≤−
+

=

≤−
+

=

≤−=

≤−=

≤−=

≤−×+







=

Xfand
X

solutionbest
xx

xxxxx
with

x
x

xg

x
x

xg

x
x

xg

x
xxg

xx
xg

xx
x

x
xg

4.4. E04: Tension/Compression Spring Design
Optimization Problem

This problem minimizes the weight of a
tension/compression spring, subject to constraints of
minimum deflection, shear stress, surge frequency, and
limits on outside diameter and on design variables
(Figure-5). There are three design variables: the wire
diameter x1, the mean coil diameter x2, and the number of
active coils x3. The mathematical formulation of this
problem is:

012665.0*)(
)287126.11,356750.0,051690.0(*

:
0.150.2,3.125.0,0.205.0

:

01
5.1

)(

045.1401)(

01
5108

1
12566

4)(

0
7178

1)(

..
)2()(min

321

21
3

3
2
2

1
3

2
1

4
1

3
12

21
2
2

2

4
1

3
3
2

1

2
123

=
=

≤≤≤≤≤≤

≤−
+

=

≤−=

≤−+
−

−
=

≤−=

+=

Xfand
X

solutionbest
xxx

with

xxxg

xx
xxg

xxxx
xxxxg

x
xxxg

ts
xxxxf

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 227

Figure 5. Tension/Compression Spring Design

6. Experimental Settings:

The following settings are taken in the present
study:
 Population size (NP) is taken as 100 [9] [20] [21].
 Control parameters, crossover rate and scaling

factor F are both fixed at 0.5 [18].
 Probability rate (Pr) is taken as 0.1 [31].
 Over all acceleration rate AR, which is taken for

the purpose of comparison is defined as[20]:

%
A

BA

NFE
NFENFEAR −

=

 where A and B are different algorithms.
 In every case, a run was terminated when

04
minmax 10−≤− ff was reached where fmax and fmin

are respectively maximum and minimum fitness
value [20] or when the maximum number of
function evaluation (NFE=106) was obtained [10].

 Total Runs=50 [20], [21].
 All algorithms are implemented in Dev-C++ and the

experiments are conducted on a computer with 2.00
GHz Intel (R) core (TM) 2 duo CPU and 2- GB of
RAM.

6. Simulated Results and Analysis:

6.1. Comparison with simple DE (SDE)

Solution of engineering problems is given in
Table-1-Table-4. Each solution is taken as the
average of 50 runs by each algorithm. We comparison
the algorithms in the term of number of function
evaluation (NFE) and in term of CPU time.

In Table-1 solution of E01 is given. From the
Table-1 we can see that the comparison for E01. Here
it is clear that SDE take 35480 NFE to reach the
solution while total NFE taken by SPI-DE and IQI-
DE are 32170 and 30370 respectively. Hence the
acceleration rate of SPI-DE with respect to SDE is
9.32% while acceleration rate of IQI-DE with respect
to SDE is 14.40%.

Similarly we can see results for the other
engineering problems from Table-2, Table-3 and
Table-4 and analysis the efficiency of SPI-DE and
IQI-DE. For E02 SPI-DE and IQI-DE are 36.75% and
37.19% respectively faster than SDE. In case of E03,
SPI-DE and IQI-DE are 55.53% and 55.91%
respectively faster than SDE. So we can see that for
E01, E02 and E03, IQI-DE gives faster performance
than SPI-DE and SDE but in case of E04, the
acceleration rate of IQI-DE is 54.42% with respect to
SDE while acceleration rate of SPI-DE is 57.25%
with respect to SDE. Hence in case of SPI-DE gives
better performance than IQI-DE.
So we can see that both SPI-DE and IQI-DE gives
fast convergent speed rather than SDE and shows
their superiority over SDE.

Table 1. Solution of E01 and comparisions in term of average nfe of 50 runs.

Solution SDE SPI-DE IQI-DE
x1 0.2058 0.2058 0.2058
x2 3.4684 3.4683 3.4683
x3 9.0367 9.0366 9.0366
x4 0.2057 0.2057 0.2057

Mean
f(x)

1.72512 1.724851 1.724851

CPU
time

0.5 sec 0.3 sec 0.2 sec

Mean
NFE

35480 32170 30370

AR(%) -- 9.32 14.40

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 228

Table 2. Solution of E02 and comparisions in term of average nfe of 50 runs.
Solution SDE SPI-DE IQI-DE

x1 0.8125 0.8125 0.8125
x2 0.4375 0.4375 0.4375
x3 42.1085 42.1085 42.1085
x4 176.65 176.63 176.63

Mean f(x) 6060.93 6059.7143 6059.7143
CPU time 0.8 sec 0.5 sec 0.5 sec

Mean
NFE

77840 49220 48890

AR(%) -- 36.76 37.19

Table 3. Solution of E03 and comparisions in term of average nfe of 50 runs.
Solution SDE SPI-DE IQI-DE

x1 3.4999 3.4999 3.4999
x2 0.7 0.7 0.7
x3 17.0 17.0 17.0
x4 7.3 7.3 7.3
x5 7.8 7.8 7.8
x6 3.35021 3.35021 3.35021
x7 5.28668 5.28668 5.28668

Mean f(x) 2996.31 2996.31 2996.31
CPU time 0.5 sec 0.1 sec 0.1 sec

Mean
NFE

34480 15330 15200

AR(%) -- 55.53 55.91

Table 4. Solution of E04 and comparisions in term of average nfe of 50 runs.
Solution SDE SPI-DE IQI-DE

x1 0.05169 0.05169 0.05169
x2 0.3568 0.3567 0.3567
x3 11.2914 11.2871 11.2871

Mean f(x) 0.012675 0.012665 0.012665
CPU time 0.1 sec 0.05 sec 0.06 sec

Mean NFE 7790 3330 3550
AR(%) -- 57.25 54.42

In Figure 6, the convergence graphs for engineering
problems are given in term of NFE and fitness values.
Here we would like to mention that these graphs are

based on the best results in 50 runs by each
algorithm.

NFE

2000 4000 6000 8000 10000

Fi
tn

es
s

Va
lu

e

1

2

3

SDE
SPI-DE
IQI-DE

(a) E01

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 229

NFE

2000 4000 6000 8000 10000

Fi
tn

es
s

Va
lu

e

4000

6000

8000

10000

12000 SDE
SPI-DE
IQI-DE

(b) E02

NFE

2000 4000 6000 8000 10000

Fi
tn

es
s

Va
lu

e

2000

3000

4000

5000

6000

7000

SDE
SPI-DE
IQI-DE

(c) E03

NFE

2000 4000 6000 8000

Fi
tn

es
s

Va
lu

e

0

5

10

15

20

SDE
SPI-DE
IQI-DE

(d) E04

Figure 6. Convergence graphs for (a) E-01 (b) E-02 (c) E-03, (d) E-04

6.2. Comparison with Other Algorithms

Comparison of proposed SPI-DE and IQI-DE with
other algorithms, CPSO [22], SicPSO [23], CoPSO
[24], Coello [25], Coello and Montes [26] , He et al
[28], and MBFOA [30], are given in Table-5. These

results are given in term of average fitness which is
taken from different literature. From Table-5 it can be
see that every algorithm is able to solve the given set
of problems but our proposed SPI-DE and IQI-DE
gives the better solution in the comparison of other
evolutionary algorithms.

Table 5. Comparisons of Proposed SPI-DE and IQI-DE with other evolutionary algorithms in terms of average

fitness value

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 230

Algorithms Problems
 E01 E02 E03 E04
CoPS
O

1.72485 6,059.7
143

2,996.34
81

0.012665

Coello 1.74830 6288.74
45

NA 0.012704

Coello
&
Monte
s

1.72822 6059.94
63

NA 0.012681
0

SicPS
O

1.72485 6,059.7
143

2,996.34
81

0.012665

CPSO 1.72802 6061.07
77

NA 0.012674

He et
al

2.381 6059.71
43

NA 0.012671

MBF
OA

2.386 6060.46
0

NA 0.012665

SPI-
DE

1.72485
1

6059.71
43

2996.31 0.012665

IQI-
DE

1.72485
1

6059.71
43

2996.31 0.012665

7. Conclusions

In the present study, two modified methods are

suggested for selecting the base vector. Both methods
are based on interpolation: inverse quadratic
interpolation and sequential parabolic interpolation.
The corresponding DE variants are named IQI-DE
and SPI-DE. Basically the idea behind these variants;
IQI and SPI is to exploit the local information of the
search domain for generating the base vector. The
proposed IQI-DE and SPI-DE are validated on a set
of 4 engineering design problems. All the problems
are non linear and constrained in nature and the
numerical results are compared with basic DE and
also with other methods previously used for solving
these problems. Form the results; it was observed that
the proposed variants are quite competent for solving
such problems and give the superior performance in
the comparison of SDE and some other enhance
version of evolutionary algorithms.

Acknowledgements

The author’s would like to thank the editor’s of this
special issue: Tarun Kumar Sharma and the unknown
reviewers/ referees for giving their valuable suggestions,
which helped us in improving the shape of the paper.

References

[1] R. Storn, K. Price, Differential evolution—a simple

and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization,
11:4 (1997) 341–359.

[2] T. K. Sharma, M. Pant, V.P. Singh, Adaptive Bee
Colony in an Artificial Bee Colony for Solving
Engineering Design Problems, Advances in
Computational Mathematics and its Applications,
1:4(2012) 213-221.

[3] Y. Ali, S. Iman, Optimal tuning of TCSC controller
using particle swarm optimization, Advances in
Electrical Engineering Systems, 1:1 (2012) 24-29.

[4] Y. Zhang, L. Wu, Rigid Image Registration by
PSOSQP Algorithm, Advances in Digital
Multimedia, 1:1(2012) 4-8.

[5] Z. Zhang, Pattern recognition by PSOSQP and rule
based system, Advances in Electrical Engineering
Systems, 1:1 (2012) 30-34

[6] T. K. Sharma, M. Pant, V.P. Singh, Improved local
search in artificial bee colony using golden section
search, Journal of Engineering, 1:1 (2012) 14-19.

[7] S. Wang, L. Wu, An improved PSO for bankruptcy
prediction, Advances in Computational Mathematics
and its Applications, 1:1 (2012) 1-6.

[8] A. Ghoreishi, A. Ahmadivand, State feedback design
aircraft landing system with using differential
evolution algorithm, Advances in Computer Science
and its Applications, 1:1 (2012) 16-20.

[9] Y. Cai, J. Wang, J. Yin, Learning enhanced
differential evolution for numerical optimization,
Springer-Verlag Soft Computing (2011)
doi:10.1007/s00500-011-0744-x,.

[10] M. Ali, M. Pant, Improving the performance of
differential evolution algorithm using cauchy
mutation, Soft Computing, (2010)
doi:10.1007/s00500-010-0655-2.

[11] B.V. Babu, R. Angira, Modified differential
evolution (MDE) for optimization of non-linear
chemical processes, Computer and Chemical
Engineering, 30 (2006) 989-1002.

[12] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V.
Zumer, Self adapting control parameters in
differential evolution: a comparative study on
numerical benchmark problems, IEEE Transaction of
Evolutionary Computing, 10:6 (2006) 646–657.

[13] H. Fan, J. Lampinen, A trigonometric mutation
operation to differentia evolution, Journal of Global
Optimization, 27 (2003) 105-129.

Pravesh Kumar, Millie Pant, & VP Singh, AMEA, Vol. 2, No. 3, pp. 221-231, 2012 231

[14] S. Das, A. Abraham, U. Chakraborty, A. Konar,
Differential evolution using a neighborhood based
mutation operator, IEEE Transaction of Evolutionary
Computing, 13:3 (2009) 526–553.

[15] P. Kaelo, M.M. Ali, A numerical study of some
modified differential evolution algorithms, European
Journal of Operational Research, 169 (2006) 1176-
1184.

[16] J. Liu, J. Lampinen, A fuzzy adaptive differential
evolution algorithm, Soft Computing Fusion Found
Method Appl., 9:6 (2005) 448–462.

[17] N. Noman, H. Iba, Accelerating differential
evolution using an adaptive local search, IEEE
Transaction of Evolutionary Computing, 12:1 (2008)
107–125.

[18] M. Pant, M. Ali, A. Abraham, Mixed mutation
strategy embedded differential evolution, IEEE
Congress on Evolutionary Computation, 2009, pp.
1240-1246.

[19] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential
evolution algorithm with strategy adaptation for
global numerical optimization, IEEE Transaction of
Evolutionary Computing, 13:2, (2009) 398–417.

[20] S. Rahnamayan, H. Tizhoosh, M. Salama,
Opposition based differential evolution, IEEE
Transaction of Evolutionary Computing, 12:1 (2008)
64–79.

[21] J. Zhang, A. Sanderson, JADE: Adaptive differential
evolution with optional external archive, IEEE
Transaction of Evolutionary Computing, 13:5 (2009)
945–958.

[22] Q. He, L. Wang, An effective co-evolutionary
particle swarm optimization for constrained
engineering design problems, Engineering
Applications of Artificial Intelligence, 2007, pp. 89-
99.

[23] L.C. Cagninal, S.C. Esquive, Solving engineering
optimization problems with the simple constrained
particle swarm optimizer, Informatica, 32 (2008)
319–326.

[24] A.H. Aguirre, A.M. Zavala, E.V. Diharce, S.B.
Rionda, COPSO: Constrained optimization via PSO
algorithm, Technical Report No. I-07-04/22-02-
2007, Center for Research in Mathematics (CIMAT),
2007.

[25] C.A.C. Coello, Use of a self-adaptive penalty
approach for engineering optimization problems,
Computers in Industry, 41 (2000) 113–127.

[26] C.A.C. Coello, E.M. Montes, Constraint-handling in
genetic algorithms through the use of dominance-
based tournament selection, Advanced Engineering
Informatics, 16 (2002) 193–203.

[27] C.A.C. Coello, Theoretical and numerical constraint
handling techniques used with evolutionary
algorithms: a survey of the state of the art, Computer
Methods in Applied Mechanics and Engineering,
191:11-12 (2002), 1245–1287.

[28] S. He, E. Prempain, Q.H. Wu, An improved particle
swarm optimizer for mechanical design optimization

problems, Engineering Optimization, 36:5 (2004)
585–605.

[29] L. Jouni, A constraint handling approach for
differential evolution algorithm,. in: Proceeding
IEEE Congress on Evolutionary Computation (CEC
2002), 2002, pp. 1468-1473.

[30] E.M. Montes, B.H. Ocaña, Modified bacterial
foraging optimization for engineering design, In:
Dagli Cihan H, et al., editors. Proceedings of the
Artificial neural networks in engineering conference
(ANNIE’2009), ASME Press series, Intelligent
engineering systems through artificial neural
networks, 19, 2009, pp. 357–364.

[31] P. Kumar, M. Pant, V.P. Singh, Modified mutation
operators for differential evolution,. in: Proceeding
International Conference of Soft Computing for
Problem Solving (SOCPROS-2011), Springer, 2011,
pp 579-588.

[32] T. Ray, T. Kang, S.K. Chye, An evolutionary
algorithm for constraint optimization, In Whitley, D.,
Goldberg, D, Cantu-Paz, E., Spector, L.,Parmee, I.,
Beyer, H.G., eds.: Proceeding of the Genetic and
Evolutionary Computation Conference (GECCO
2000) 2000, pp. 771-777.

Vitae

Mr. Pravesh Kumar was born in Baraut, India. He
obtained Msc (mathematics) degree in 2006 in
Mathematics department from CCS University
Meerut, India. After that he received ME (software
engineering) degree in 2009 in Computer Science and
Engineering department from Thapar University
Patiala, India. He worked as a research scholar in the
Department of Applied Science and Engineering, IIT
Roorkee, India. His research interest includes Global
optimization, Evolutionary algorithms such as PSO,
and Differential evolution, Soft computing etc. He
has been published and presented more than 15
research paper in various international journals and
conferences.

Dr Millie Pant is working as an Assistant Professor
in Department of Applied Science and Engineering,
Indian Institute of Technology (IIT), Roorkee, India
since 2007. Her research interest includes
evolutionary and swarm intelligence algorithms and
their applications in various complex engineering
design problems.
.

	Differential Evolution with Interpolation Based Mutation Operators for Engineering Design Optimization

